Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
4 tháng 3 2021 lúc 13:18

Áp dụng Bđt Bunhiacopxki vào 2 số \(x^2+4y^2\) và \(1+\dfrac{1}{4}\) có:

\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2=A^2\Rightarrow A^2\le25\Rightarrow A\le5\)

Dấu = xảy ra \(\Leftrightarrow\dfrac{x^2}{1}=\dfrac{4y^2}{\dfrac{1}{4}}\Leftrightarrow x^2=16y^2\Rightarrow x=4,y=1\) 

Bình luận (0)
Hoàng Thị Mai Trang
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 23:09

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

Bình luận (1)
Nguyễn Nhật
Xem chi tiết
Akai Haruma
5 tháng 1 2023 lúc 18:55

Lời giải:

ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$

$\Leftrightarrow (x-2y)^2+8x=5$.

Đặt $x-2y=a; x=b$ thì bài toán trở thành:

Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$

Áp dụng BĐT AM-GM:

$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$

$\Rightarrow a^2+1\geq -2a$

$\Rightarrow a^2+8b+1\geq -2a+8b$

$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$

Bình luận (0)
nguyen thi thanh huyen
Xem chi tiết
Xem chi tiết
Agatsuma Zenitsu
30 tháng 1 2020 lúc 17:55

Theo đề bài ta có:

\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)

\(\Rightarrow0< x^2+y^2+z^2\le4\)

Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)

Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)

\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)

Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\) 

\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:

\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)

\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)

\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)

Vậy ....................

Bình luận (0)
 Khách vãng lai đã xóa
ღ๖ۣۜLinh
30 tháng 1 2020 lúc 18:02

ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡

có cách nào không dùng hàm k ???

Bình luận (0)
 Khách vãng lai đã xóa
Agatsuma Zenitsu
30 tháng 1 2020 lúc 18:04

Hmmm h thì mình chưa ra nhưng bạn muốn theo cách gì để mình tìm?

Bình luận (0)
 Khách vãng lai đã xóa
Thu hương Phạm
Xem chi tiết
Lữ Thị Khánh Chi
Xem chi tiết
trần gia bảo
Xem chi tiết
tth_new
23 tháng 2 2020 lúc 20:46

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
23 tháng 2 2020 lúc 20:49

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

Bình luận (0)
 Khách vãng lai đã xóa
Không Tên
23 tháng 2 2020 lúc 22:37

\(1+xy=2\left(x^2+y^2\right)\ge4xy\)    =>  \(xy\le\frac{1}{3}\)

\(1+xy=2\left(x^2+y^2\right)=2\left(x+y\right)^2-4xy\ge-4xy\) =>   \(xy\ge-\frac{1}{5}\)

=>  \(-\frac{1}{5}\le xy\le\frac{1}{3}\)

\(P=7.\left[\left(x^2+y^2\right)^2-2x^2y^2\right]+4x^2y^2\)

\(=7.\left(\frac{1+xy}{2}\right)^2-10x^2y^2=\frac{-33x^2y^2+14xy+7}{4}\)

đặt  \(t=xy\)

\(P=\frac{-33t^2+14t+7}{4}\)

........................

\(P_{min}=\frac{18}{25}\) tại  \(xy=-\frac{1}{5}\)

\(P_{max}=\frac{70}{33}\)  tại  \(xy=\frac{7}{33}\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Song Phương
Xem chi tiết
Nguyễn Đức Trí
20 tháng 8 2023 lúc 10:21

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

Bình luận (0)